
RD-R174 600 THE DESIGN AND IMPLEMENTATION OF A NETWORK CONPUTERMU £1'1
STATE UNIV OF NEW YORK AT STONY BROOK A J BERNSTEIN
29 NOY 86 AFOSR-TR-86-B?B3 OFOSR-81-99

UNLSSIFIED F/G /2 NEUhChEE ME



iI~i'A 'i2"
1.4 16

MICROCOPY RESOLUTION TEST CHART
I TArNDARDS I961 A

Z- Z ".q Z-4



pFOSR-TR-t; 6 8 3 D
Final ResearchSummary ELEC_ L--

AFOSR81 0197 NOV 2 8 198O6r
Professor Arthur J. Bernstein

'x A

The research performed under this grant is concerned with distributed
languages and algorithms. The results obtained can be divided into 5 major
areas.

0 O A. Distributed Languages - High Level Considerations j 4.1 e , 2. , i

The concern here was to design a distributed language which has the pro-
i perty that the modules of a program written in it can be distributed over the

nodes of a network computer. The correctness of the program must not depend ' '';-
on how the distribution is performed, although clearly its run time efficiency will - ,
be effected. Such distributed languages have been investigated by a number of'
researchers but our view of the problem is somewhat different. We are interested
in languages that support low level, systems applications which rely on flexible
features that can be efficiently implemented and that do not constrain the pro-
grammer in the way an algorithm is formulated. Such algorithms are of interest -

in operating system design and are the subject of a growing body of research -- --

literature. Examples include election algorithms, distributed deadlock detection "'

algorithms, algorithms for achieving distributed synchronization and load balan
ing and algorithms for achieving reliable operation in an unreliable environment. ,

Algorithms of this type may involve one or more of the following features:
replication of information, redundant computation, resiliency in the face of incon-
sistent information, communication failures or node failures. These algorithms
are generally characterized by a rather high level of message type communication
between distributed processes. Processes generally do not wait for a response
immediately after sending a message and in many cases there is no response at
all. Furthermore, communication is frequently of a multicast or broadcast
nature. Multicast is particularly significant in applications concerned with distri-
buted synchronization and reliability and is naturally supported by current com-
munication technology (e.g., Ethernet). Therefore, multicast features in a
language can be efficiently implemented. Another aspect of communication in

b.. such algorithms is that a message need not always be addressed to a unique pro-
0- cess; any one of a set of processes may be eligible to receive it. For example, for

reasons of reliability, load sharing or to reduce the lengths of communication
paths, duplicate servers may be distributed throughout a network. In such situa-

U tions the destination of a message cannot be determined at compile time since
Sthere may be several processes which are equally suitable as targets. The deci-

Ssion must be made at run time based on the state of the processes and their loca-
tion in the net.

A scheme for doing this based on names visible in some region of a distri-
buted program was developed. Such names serve as rendezvous points between

This docur_,en' .
for puL 6 '.. . 5

Th. ~ 66 11 25 393



O. VIE -'4 .- -W4 -RW - V

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
is. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2& SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distributionSDECLASSIFICATION/DOWNG RADING SCHEDULE unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

AFOSR.TR- 86-0783
G. NAME OF PERFORMING ORGANIZATION b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

(I, applicable )

tate University of New York (itapplicable AWOSR

ec. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code)

Stony Brook, NY 11794-4466 Bldg. 410
Bolling AFB, DC 20332-6448

U.. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If appllcable)

AFOSR I_ NM AFOSR-81-oI7
8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.

Bldg. 410 PROGRAM PROJECT TASK WORK UNIT

Bolling AFB, DC 20332-6448 ELEMENT NO. NO. NO. NO.

61102F 2304 A2
,,. TITLE (Include Security Caification) The Design and Imple-

ntatlnof a Network rCmutizr
12. PERSONAL AUTHOR(S)

Arthur J. Bernstein
'13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo.. Day) I1. PAG COUNT

T4nal I FROMBI0615 T085].14_L 860529 G

16. SUPPLEMENTARY NOTATION

17. COSATI COOES lB& SUBJECT TERMS (Continue on reverse if necessary and identify by biock number)

FIELD GROUP SUB. GR.

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The research performed under this grant is concerned with distributed languages
and algorithms. Accomplishments are: (1) the design of a distributed language
which has the property that the modules of a program written in it can be distributed
over the modes of a network computer; (ii) the implementation of communication struc-
tures for supporting message passing; and (iii) the implementation of a two level
system for supporting multicast message passing. In addition a theoretical study
concerned with the application of verication techniques to real time programs was
conducted. Four Ph.D theses, 3 Masters theses and 12 referred papers and conference
proceeding were also produced.

20. OISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED/UNLIMITED C SAME AS RPT. 0 OTIC USERS 0C]

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

* 4tnctude Area Code iDr. Robert Buchal Ii.,1-5G I NM

DD FORM 1473, 83 APR EDITION OF I JAN 73 IS OBSOLETE.

SECURITY CLASSIFICATION OF THIS PAGE

*i I i ., ""'" " """"" "'" '" " " """ " "" '""" """ * "" " ' ". .. "" " " " "' "'". . .



processes through which messages can be transmitted. If the message is sent in
unicast mode then any process within the region is eligible to receive it; if it is
sent in multicast mode then multiple processes in the region may copy the mes-
sage. Thus, name based addressing naturally integrates both concepts. Imple-
mentation of these ideas is described in (D).

The initial work on name based addressing formed the basis of a PhD thesis
by Dr. David Gelernter, who is now on the faculty of the Computer Science
Department at Yale. A paper describing this effort has been published [GB82].
An equipment grant from the National Science Foundation was obtained based
on this work and another network related project in the department. Work on
the project was continued by Dr. Mustaque Ahamad, and formed the basis of his
PhD thesis. He is now on the faculty of Georgia Institute of Technology. Results
on the uses and implementation of multicast were published in [AB85a].

B. Distributed Algorithms

A number of distributed algorithms of the type described above have been
investigated.

1. Distributed Stable Storage - We have developed a distributed stable
storage algorithm in which copies of a replicated database are distributed over
nodes connected to a broadcast medium. This is a generalization of the standard
stable storage model (Lecture Notes in Computer Science, vol 105, Distributed
Systems - Architecture and Implementation, Springer Verlag, ch 11) in which
data is duplicated on independent storage devices at a single node There are
two disadvantages of the standard approach. Although data may be preserved at
a node where a processor crash has occurred,oit will not be available during the
time that the processor is down. Secondly, malfunctions of the processor other
than simple crashes can destroy the data.

The algorithm we have developed is designed specifically for data reliability
in a broadcast environment. It is loosely coupled in the sense that it is designed
to function despite the fact that not all copies of the data need agree and not all
processors may be functioning correctly. A significant aspect of the proposal is
that if no errors occur the redundancy is largely transparent to the procedures for
accessing the data, requiring no extra communication. Additional messages are
required only when errors are detected in copies of stored information. The sys-
tem can handle a much wider class of errors than are handled by standard stable
storage. A significant part of the work is the development of a Markov model to
describe the failure behavior of the system. The model relates various parame-
ters of the algorithm to the mean time to data loss. A paper describing this work
has been published [Be85].

2. Distributed Dictionaries - We have developed an algorithm for updating
replicated databases where serial consistency is not required. In the applicationwe have considered, the database is a dictionary which supports the insertion and



deletion of entries. We have improved upon some earlier work in this area
(Fischer and Michael, "Sacrificing Serializability to Attain High Availability of
Data in an Unreliable Network", Proc. ACM Symp. on Principles of Database
Systems", Mar 1982) by showing how communication costs can be reduced and
the algorithm tailored to the topology of the network. We have developed
several extensions to this model. One, which we refer to as the multiple insertion
case, allows a given dictionary entry to be inserted more than once. In the origi-
nal formulation of the problem this is prevented by tagging each entry with a
unique number, thus forcing each entry to be unique. This may not be appropri-
ate in applications where the creation of truly identical entries is unavoidable, the
result of the delays involved in propagating information through a network. A
second extension is a technique for reducing the size of data structures when the
network becomes very large.

The work in this area formed the basis of a PhD thesis by Dr. Gene Wuu,
who is now on the technical staff at Bell Telephone Laboratories. A paper
describing the algorithm and a proof of its correctness was presented at a recent
conference and was later selected to be reprinted in a journal [WB84].

3. Distributed Transactional File System - A major new research direction
r, in this area is the study of distributed algorithms involved in implementing a dis-

tributed file system. Our interest in these algorithms is prompted by the recent
award by the National Science Foundation of a Coordinated Experimental
Research Grant to the Computer Science Department. (Stony Brook was ranked
first in the nation in this award competition.) The proposed research involves
building a system in which a relational database plays a central role. As one of
the principal investigators on this grant my concern has been with the distributed
nature of the system and is an outgrowth of AFOSR supported research. The
work under AFOSR support has been concerned with developing distributed algo-
rithms to support naming of relations and concurrency control for transactional
access to relations in a network. In the naming area we have developed a tech-
nique to extend the UNIX file structure so that relations distributed across the
network can be accessed in a transparent way from any site. The goal is similar
to that of the LOCUS system but the approach we have taken involves no
modifications to UNIX. The stress has been on developing an algorithm which
imposes no additional overhead if the relation to be accessed is stored locally. A
technique for dealing with name collisions is an important aspect of the work.

We have developed an optimistic algorithm for controlling concurrent access
to a distributed database based on the original single site optimistic algorithm n For
(Kung and Robinson, "On Optimistic Methods for Concurrency Control, ACM '

Trans. on Database Systems, June 1981). Transactions are numbered and each [l
tuple in a relation is tagged with the number of its creator and (if it has been :'
deleted) its deletor. In this way different versions of a relation, corresponding to
different points in an equivalent serial order, can be extracted. By choosing the _ _

correct version it is possible for each transaction to see a consistent view of the iton/
database without resorting to locking and thus validation of read onlye

,bility Codes
jAvai1 and/or

Dist Special

4rI



transactions is eliminated. This is a major advantage of the approach since in
many applications read only transactions are considerably more numerous than
transactions which update the database. The latter transactions must still be
validated, but generalized validation conditions have been developed which sub- ...
stantially reduce the probability of rollback. An important part of the work is a
technique which allows a transaction to extract the appropriate version simply.
The algorithm is so structured that deadlocks and cascaded rollbacks cannot
occur.

This work was initiated under AFOSR support and is now continuing under
NSF support. The initial algorithm was described at a recent conference
[ABGS86a] and a more comprehensive paper has been invited for publication in a
journal [ABGS86bI.

C. Network Communication

An implementation of the communication structures described in (A)
motivated an investigation of novel technologies for supporting message passing.
A technique called staged circuit switching (SCS) was developed which combines
advantages of both the circuit switching and packet switching approaches. While
circuit switching has a potential for high throughput, the initial delay in setting
up a connection is a disadvantage, particularly when message lengths are small.
In packet switching resources are acquired and released dynamically as the mes-
sage travels through the network. Unfortunately, throughput for long messages
is a problem since each packet must separately acquire the resources that it
needs. In both cases a store and forward technique is generally used; the message
is copied into the memory of each intermediate node along its path.

The SCS protocol attempts to set up a path, as in circuit switching, by
reserving resources in advance. As soon as a situation arises in which a request
for a resource cannot be granted the message is transmitted over the portion of
the path that has been previously established and the resources used in that por-
tion can be released. Thus, unlike circuit switching, SCS is non-blocking in the
sense that the protocol never holds resources while waiting for other resources.
Under heavy traffic situations this reduces to a packet switching protocol since
resources will not be available for more than one hop at a time. In lightly loaded
situations SCS reduces to circuit switching since blocking situations in the latter
are unlikely in such circumstances.

The SCS proposal goes beyond a protocol in that hardware support was also
designed. A small crossbar switch local to each node and under its control was
proposed. Inputs to the switch consist of lines connected to the switches of phy-
sically neighboring nodes as well as a connection to the associated node. Thus a
node can cause a direct connection to be made through its switch connecting the
switches of two neighboring nodes. In this fashion the SCS protocol can establish
a physical circuit from a source to a destination, thus avoiding the recopying of
information at intermediate nodes. This has the effect of dynamically altering

i YX .. % .Z". _ ,• ., •• l -jj - -_,._ i .'. , ' %, ' ' % *" ' a- %.. *. ., -, ' '•'



the topology of the net since the set of nodes directly connected to a given node -
its logical neighbors - can be varied. This in turn has implications with regard to
the problem of how modules should be distributed in the net to optimize run
time efficiency. Thus SCS allows experimentation with protocols in which
heavily used message paths can be supported dynamically by physical connec-
tions.

The results of this investigation have been published [AGBB83]. The work
was carried out by Dr. Gelernter and two Master's students, Mr. Mauricio
Arango and Mr. Todd Morgan.

D. Support of Multicast

A two level system for supporting multicast message passing has been
developed and implemented. At the higher level a name based addressing
scheme, as described in (A), has been incorporated into Modual-2. A preprocessor
for the language was built which recognizes communication statements and
related data structures, and library modules are provided for supporting the new
communication features at run time. The preprocessor will perform type check-
ing related to interprocess communication and then convert programs using name
based addressing into standard Modula-2 programs which call upon library
modules to support communication. All the processes to which a particular name
is visible consititute a multicast group, and any or all of them may receive a copy
of a message addressed to the name.

At the lower level, a multicast protocol (MP) has been embedded in UNIX
which is integrated into the 4.2 bsd socket structure. Multicast sockets operate
in datagram mode with the difference that a set of processes (the multicast -
group) may essentially be connected to the same socket and thus receive copies of
each message sent to the socket. MIP is designed to utilize the internet protocol
(IP) in a manner analagous to the implementation of TCP. Multicast addresses
on the ethernet are associated on a one-to-one basis with names in the distributed
language. All nodes in the net which support processes in the multicast group
respond to the address corresponding the the associated name.

A version of MP has been implemented for use on a single ethernet. This
work was carried out by Dr. Mustaque Ahamad with the help of a Master's stu-
dent, Mr. Richard Trommer. A paper describing this project was presented at a
recent conference [AB85b]. The protocol currently supports the distributed file
system work described in (B.3) and has also been put into use at the University
of Rochester. The preprocessor and library modules have also been implemented.

In extending the protocol for use in an internet environment two approaches
can be taken. The simplest is one in which the sending node unicasts a copy of
the message to be sent to some representative node on each net in the internet
containing a process in the multicast group. Each representative then multicasts
the message to members of the multicast group on its net using the above
scheme. This suffers from the inefficiency that, particularly in large internets

-~



with large multicast groups, duplication of unicast messages may result. This fol-
lows from the fact that distinct copies must be sent to each net even though they
may follow essentially the same route. This can be avoided by using a more ela-
borate scheme, which we call extended multicast, in which a tree is dynamically
maintained in the internet using a distributed algorithm and serves as a routing
structure for delivering the message to be multicast to each net. This work has
been described in recent publications [FWB84], [FWB85].

Another aspect of the work is concerned with developing an algorithm for
maintaining the membership list of the multicast group in an internet when
processes can enter and exit the group at run time. Message delays and network
failures can cause inconsistency among the replicated copies of the list main-
tained by group members. A robust algorithm based on the dictionary algorithm
described in (B.2) has been developed and is described in [FBW85].

E. Program Verification

The language study described above was complemented by more theoretical
work concerned with the application of verification techniques to real time pro-
grams. Such programs are used to monitor or control events in an external
environment and therefore must respond within certain hard time constraints.
Processes, which are the asynchronous entities within the program, are natural
sites for the code which handles the asynchronous events.

It is generally agreed that real time programs are the hardest to debug due
to the difficulty of controlling the external environment and the unpredictability
of the sequence and timing of events. Formal verification techniques, which have
been developed for sequential programs and more recently adapted to concurrent
programs, do not deal with real time issues. The purpose of this part of the
research was to extend these techniques to include real time.

Temporal logic was found to be a suitable formal system upon which to base
such extensions. Such a logic is similar to a standard first order logic with the
addition of new temporal operators. A typical first order predicate may assert
that something is true in the current state. This can be modified to a temporal
assertion which deals with the truth of a predicate in the current and all future
states. Alternatively, a temporal assertion may claim the ultimate truth - at
some future time - of a predicate.

The approach taken in our work is to extend temporal logic to include asser-
tions in which time is explicitly included. Thus, asserting that a particular state
will or will not be reached within the next t time units is possible. In order to do
this new axioms and rules of inference dealing with time are introduced into the
model. In the resulting formal system it is possible to make assertions about the
ordering of states as execution unfolds based on known time constraints on
events in the external world. Using this model we are able to prove some
interesting properties of real time programs (e.g., a handler process will always be
ready when the next event occurs, a timeout situation cannot occur).

'I

p ' 'o' .,. .:" .-... --.. M ' .-. . . 7• - ' ". .. , .- -o"- -- " " .- - '.--"''' """ ""-.



A paper describing this work was published [BH81]. The research served as
the basis of a PhD thesis for Dr. Paul Harter who is now on the faculty of the
Computer Science Department at the University of Colorado. A grant was also
obtained from the National Science Foundation to continue the work.

Since the language work is directed towards supporting low level distributed
algorithms, timeout plays a significant role. As a separate project we have stu-
died the semantics of timeout to develop a formal verification technique for mes-
sage passing programs in which a sender or receiver of a message may timeout if
message transmission is delayed beyond a specified interval. Axioms for describ-
ing such communication statements are developed. An important issue here is
the notion of predicate transfer between the communicating processes. The
predicate describes the information which can be deduced by the process which
has timed out about the state of its correspondant. It is shown that even when
no message is exchanged, information can be transferred between processes. A
paper describing this work has been published [Be861.

References

[BH81] P. Harter and A. J. Bernstein, "Proving Real Time Properties of Pro-
grams With Temporal Logic", 8th Symp on Operating Systems Principles, ACM,
Pacific Grove, Cal., Dec 1981.

1GB821 D. Gelernter and A. J. Bernstein, "Distributed Communication via Global
Buffer", ACM SIGACT-SIGOPS Symp on Principles of Distributed Computing,
Ottawa, Canada, Aug 1982.

IAGBB831 M. Arango, D. Gelernter, H. Badr and A. J. Bernstein, "Staged Circuit
Switching for Network Computers", ACM SIGCOMM 83 Symp: Communica-
tions, Architectures, and Protocols, Austin, Texas, Mar 1983.

[FWB84] A. Frank, L. Wittie and A. J. Bernstein, "Group Communication on
Netcomputers", 4th Int'l. Conf. on Distributed Computing Systems, San Fran-
cisco. CA., May 1984.

[WB84] G. Wuu and A. J. Bernstein, "Efficient Solutions to the Replicated Log
and Dictionary Problems", 3rd ACM SIGACT-SIGOPS Symp. on Principles of
Distributed Computing, Vancouver, Canada, Aug 1984 (selected by SIGOPS for
republication in Operating Systems Review, Jan. 1986).

JAB85a M. Ahamad and A. J. Bernstein, "The Application of Name Based
Addressing to Low Level Distributed Algorithms", IEEE Trans. on Software, vol
SE-Il, Jan 1985.

[Be85] A. J. Bernstein, "A Loosely Coupled Distributed System for Reliably

4.



Storing Data", IEEE Trans. on Software Engineering, vol SE-il, May 1985.

[FWB85] A. Frank, L. Wittie and A. J. Bernstein, "Mulitcast Communication in
Distributed Groups on Network Computers", IEEE Software, vol 2, May 1985.

,,' [AB85b] M. Ahamad and A. J. Bernstein, "Multicast Communication in UNIX
4.2", 5th Int'l Conf. on Distributed Computing, Denver, Colorado, May 1985.

[WB85] G. Wuu and A. J. Bernstein, "False Deadlock Detection in Distributed
Systems", IEEE Trans on Software Engineering, vol SE-1I, Aug 1985.

[FBW85] A. Frank, A. J. Bernstein and L. Wittie, "Maintaining Weakly-
Consistent Replicated Data on Dynamic Groups of Computers", 14th Int'l. Conf.
on Parallel Processing, St. Charles, IL, Aug. 195.

[ABGS86a] D. Agrawal, A. J. Bernstein, P. Gupta and S. Sengupta, "Distributed
Multi-Version Optimistic Concurrency Control for a Relational Database Sys-
tem", CompCon '86, San Francisco, CA, Mar 1986.

[Be86] A. J. Bernstein, "Predicate Transfer and Timeout in Message Passing Sys-
tems", to appear, Information Processing Letters, 1086.

[ABGS86b] D. Agrawal, A. J. Bernstein, P. Gupta and S. Sengupta, "Generalized
Optimistic Concurrency Control", invited for publication, Distributed Comput-
ing, Springer-Verlag, 1986.

4"



N
'I

.4'

$

1%

w

S


